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Abstract—This paper considers the vertical flow of an internally heated Boussinesq fluid in a vertical channel
with viscous dissipation and pressure work. In the absence of internal heating and with no applied pressure
gradient, two solutions are obtained ; the first is the expected solution with no flow. The second adiabatic
solution has temperatures less than the wall temperature and a large downward velocity. For moderate
values of heat addition two solutions are obtained ; an upper branch with hot temperatures and upward
velocities and a lower branch with downward velocities and cool temperatures. When the non-dimensional
heat addition parameter A = Hh*a?g?/v* c2 k? reaches a critical value just under 1000 the solutions
bifurcate and four solutions are obtained. For large values of A the solutions are examined using the method
of matched asymptotic expansions. The equation of the inner solution is of the form of the Painleve
transcendent. In the limit of very large 4 an infinite number of solutions are found for the inner problem.

NOMENCLATURE
A, = Hh*D?/vk?, non-dimensional heat
production;
b, depth of fluid layer;
Cps specific heat at constant pressure;
C, = vk/gh®, non-dimensional parameter;
D, = agh/c,, dissipation number ;
g, acceleration of gravity;
h, half-width of channel;
H, heat generation per unit mass;
k, thermal conductivity;
D, pressure;;
Pr, = v/k, Prandtl number ;
t, time ;
T, temperature;
u, velocity;
Vv, non-dimensional vertical velocity;
x coordinate.

Greek symbols

a, coefficient of thermal expansion;
s = a/poc, ), Gruneisen’s parameter ;
n, absolute viscosity;

g, non-dimensional temperature;
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K, thermal diffusivity;

v, kinematic viscosity;

Tijs shear stress;

% isothermal compressibility.

INTRODUCTION

VERTICAL channel and pipe flows with viscous dissi-
pation have been considered by a number of authors
[1-3]. Although these authors include viscous heating
they do not include pressure work. This omission is
appropriate if the flow is driven by an external pressure
gradient but is not appropriate if it is driven by
buoyancy forces. The role of both viscous dissipation
and pressure work in thermal convection within a
horizontal fluid layer heated from below has been
considered by [4]. Both effects have been considered
for laminar natural convection on a vertical flat surface
by [5].

The roles of viscous dissipation and pressure work
during natural convection are particularly important
in mantle convection [6]. The governing parameter is
the dissipation number D = agb/c,. In this paper we
consider flow in a vertical channel. The principle
purpose is to better understand natural convective
flows with both viscous dissipation and pressure work.
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FORMULATION OF THE PROBLEM

The basic equations for conservation of mass,
momentum and energy in a compressible fluid are [7]:

1 Dp
+d*=0, (1)
p Dt éx;
Du; ép @ty
Dl L Py g, 2
"Dt ox o 0x; pd @
DT Dp T u;
—To—=k—+pH+1,—. (3
P p Dt ox}? P 7 ox 4)

X5
We assume that the changes of density are small so
that the equation of state is given by

p = poll + x(p — po) — T — Ty)] )
where p, and T, are a reference pressure and
temperature.

In the absence of convection, heat addition and heat
conduction we can define an adiabatic solution given
by:

dp,
2 _ ) 5
dy Pag %)
dr, «T,
= . (6)
dp,  ¢p,
The solution of these equations with (4) is
T, = Toexp< gy), ¥
CP
1 +aT,
P. = Po + %
aTqp
x[exp(— pogxy) = 1] + 72~
<poX - a)
X [exp <— a)f!> —exp(— poxgy)}. (8)
P

It is convenient to introduce two non-dimensional
parameters

D=—, (9)

y = (10)
)OCpX

where D is the dissipation number and y Gruneisen’s
parameter. We will associate the characteristic length i
with the half-width of the vertical channel and in-
troduce non-dimensional coordinates

X;
<= 11
5= (11)

Introducing (9)—(11) into (7) and (8) gives
Ta = TOCXp(— D,V)’

= %(1 + fxTO)|:exp(— @> - 1}

(12)

Pa — Po
pogh
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+ﬂ<~y—>|:exp(—Df)—exp<—P—)—7>J. (13)
D \1-v ¥

Since y is of order 1 for all fluids and solids that behave
like fluids due to solid state creep, the adiabatic
quantities change significantly over a vertical distance
of order c,/yg. With y of order 1, a sufficient condition
for the density change to be smallis D « 1. In this limit
the adiabatic state reduces to

T,=T,, (14)
Pa=Po"Poth7a (15)
Pa = Po- (16)

We next introduce a set of non-dimensional
variables:

K 4; nx nK
“=yp PTPT P T pt
Co
pP=patpopy T=T,+ 5 (17)
where
c=2E. (18)
gh?

Introducing these non-dimensional variables into (4)
we obtain
C _ C
p=p,+po—P— pPor0 (19)
Y D
We shall obtain solutions for which 6 is of order 1, for
these solutions to be incompressible we further require
CD « 1.If D « 1 and C/D « 1 the flow is
incompressible and (1) reduces to
ou.
o,

* (20)

We next turn to the momentum equation. Introduc-
ing the non-dimensional variables into (2) gives
p U O op 0,

D
=+ (==p+0)s, (1
po PrD &%, 0%, 0%, < yp )y @1

where Pr = n/kp, is the Prandtl number and we have
taken g to be in the — y direction. Assuming the fluid to
be incompressible except in the buoyancy term (a
modified form of the Boussinesq approximation) we
have

O )
ti 0X;
and (21) reduces to
i o dp &%,
+ 23
PrD 6x 6)5,» ox? @3)

For a very viscous fluid PrD > 1, the inertia term can
be neglected, and (23) reduces to

A5 a2
LA “‘+ea

24)
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Fic. 1. Tllustration of the vertical channel with width 2h.

Finally we consider the energy equation. Introduc-
ing the non-dimensional variables into (3) gives

o6 op op
D — + 0u, — T,ou1;— 4 Cﬁi«—{i
po ' O%, ‘6%, D 0%,
e ou;
=+ —A+ f— (25
X pg t“a)z,- @)
where
Hh*D?
A= (26)
VK

We note that A = RaD where Ra = agpHh®/kxvis the
Rayleigh number for a fluid layer of thickness 4 heated
from within. Assuming incompressibility so that D «
L p/pe =~ 1, C/D « 1, T, « 1 and (25) is valid, we

obtain
ou 628+A+ o \*
"= e %)

t

@n

Our primary interest in this paper is a vertical, fully
developed flow in a channel with a width 2h and with
walls held at 8 = 0 as illustrated in Fig. 1. We assume
that (23), (24) and (27) are applicable. For this problem
u; = V(X)and 8 = 6(x). We further assume that there is
no applied pressure gradient so that j = 0. We find
that {23), (24) and (27) reduce to

dv
= + 6 28
0 e (28)
d?6 dv\?
—+ A+ . 29
V=5 ( dx) 29
Eliminating 6 from (28) and (29) we obtain
a‘v dv
A. 3
de*  dx ( dx ) * (30)

This is the basic equation that we shall consider in this
paper.

The boundary conditions for flow in an isothermal,
vertical channel with wallsat x = +1 are

V=0, =0 atx= +1. 31)

Integration of (30) twice with these boundary con-
ditions yields

K%
a2

The required boundary conditions for this 2nd-order,
non-linear differential equation are V=0at x = +1.
In our analysis we shall consider only symmetric
solutions of (32) with respect to X = 0. Thus we can
replace one of the boundary conditions {31) with
dv  do

= =0 atx=0.
dx dx

=1y — 1401 - ). (32)

(33)

We now eliminate 8 from (28) and (29) and integrate
using (33) with the result

‘l‘i P Vd-—lé — A% (34)
dx dx
For X = —1 this becomes
93 =420 (35)
dx

The non-dimensional temperature gradient at the wall
is equal to A4 and is either positive or zero. The heat
generated internally in the channelis transferred to the
walls.

ADIABATIC SOLUTIONS, A =0

We first consider the solutions when A = 0, no heat
sources. For this case (32) becomes

eV _
dx?

with the required boundary conditions V=0 at x =
+ 1. There are two solutions of (36) that satisfy these
boundary conditions. The firstis V = 0, i.e. there is no
flow.

A second solution is obtained by integrating (36)
with respect to V withdV/dx = 0and V= V,atx =0

to give
(‘W) W - ).

iv? (36)

dx 37

Clearly V,, < 0 since {dV/dxX)? is positive definite and
0 > V > V, which implies a negative or downward
flow at the center.

We introduce w = V/V, integrating (37) then gives

w dw _ V() 12 -
f oA — Wi (’ T) t+a 69

where wis an elliptic function [8]. Sincew = latXx =0
the value of V,, is given by

1 dW 2
Vo=~ 3[[()(1 _ ws)uz}

- 1[1‘(%) F(%)]’ = 589835, (39)
3L T®
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Substituting dimensional quantities the maximum
velocity at the center of the channel is

V)= — 5,89835(

pgah’)' @

The solution V = 0 is expected in the absence of
internal heating. The second solution requires further
discussion. Cold fluid is introduced at the top of the
channel and flows down the channel at constant
velocity without any applied pressure gradient. The
maximum downward velocity is given by (37). Since
A =0,d6/dx =0 at X = + | from (35), thus there is no
heat flux at the walls, the second solution is adiabatic.

From (28) and (36) we find that
=1iy2
Ve

(41

From (39) and (41) the minimum temperature at the

center of the channel is
8(0) = — V2 = — 17.39527 42)

and the actual temperature difference between the
center of the channel and the walls is

gc,h?
dgvic’

T—Ty,= — 1739527 43)

We shall refer to this adiabatic solution as the lower
branch solution and the trivial & = 0 solution as the
upper branch solution. We shall show that for small
and intermediate values of 4 two solutions are ob-
tained which can be associated with these two
branches.

SOLUTION FOR SMALL 4

We next consider a solution for the upper branch
valid for small A. Differentiation of (32) with respect to

A gives
2
9 (?_K)= V‘l‘_{ — 41 - 3% (44)

a5\ oA 04
Our objective is to obtain the value of 0V/d4at 4 = 0.
Since V=0 at A = 0 for the upper branch solution,
(44) can be integrated twice to give

v

Al = Fall — 22)5 — 2).

A=0

53)

The constants of integration have been evaluated using
the conditions d¥/d4 = 0 at x = +1. Therefore the
upper branch solution for ¥ is initially an increasing
function of A4 since dV/dA > Ofor —1 <X < 1.

An iteration procedure valid for small A is developed
and is used to prove the existence and uniqueness of the
upper branch solution for a certain range of A.
Integrating (32) twice with respect to X and applying
the boundary conditions V(- 1) = dV/d%(0) = 0 gives
the non-linear integral equation

0
V() = — %f- 1 k(x,t) V3()dt + Ag(%),
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, (46)

—
+
~ %

kix, 1) = {

g(x) = ${1 — )5 — 32).

This is an equation of the Hammerstein type. It can be
shown that for a certain range of 4 the iterative
procedure

0
ANCE f K& D V2Ot + Ag(5) (47)
-1
with
VolX) = Ag(x) (48)

converges uniquely to a function V(xX) satisfying (46).
Since k is positive it follows from (47) that
V,.+1 < Ag for all x. Then from (49) we have

1 (° .
Voo =al= 3 [ blvi-vi s

A Q
SEJ‘ k|Vy= V1| 12g]d% (49)
-1

and the L, norm, defined for a function f by

11} 172
1=( [ 1rpes) 50)
-1
satisfies the inequality '
IVeei = Val <aM v, -V, | (51
where
(1] (1]
M? = j f (x,Hg¥rydxdt (52)
-1 -1
giving
M = 0.0736628. {53)

Convergence of the iterative procedure is guaranteed
for A < M~ = 13.575.
A numerical solution based on (49) led to con-

2.5 T T T T
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X

F1G. 2. Velocity profiles of the upper branch solution for 4 =
4 and 16. Solid lines are iterative solutions of (49). Circles are
from the series solution given in (56).
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-0.4

FiG. 3. Dependence of (dV/d%}4~! at x = Oon (dV/dx)A~ ! at x = — 1. Since solutions must satisly the

condition {dV/dx) = 0, valid solutions correspond to the intersections of the curves with the horizontal axis.

For 4 = 16, 100 and 400 two solutions are obtained. For 4 = 1000 four solutions are obtained, these are
denoted as a, b, ¢ and d.

vergence for 4 < 20 and failed to converge for larger
values of A. The numerical solution utilized a 10 point
Gaussian integration formula. The iteration was con-
sidered to converge if

10

Y VHx) | <e

i=1

10
2 Vi) - (54)
i=1

where x; were the points where the function was
evaluated. The number of iterations required for
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F1G. 4. Velocity and temperature profiles for A = 16 and 100
obtained by numerical integration of (32).

convergence increased with increasing A. Velocity
profiles for 4 = 4 and 16 with ¢ = 1073 are given in
Fig. 2.

An alternative technique for obtaining solutions
valid for small 4 is to expand in an asymptotic series of
the form

Ve AV + A2V, + -+ (55)

Substitution into (32) gives

xlO xS

1 1 23x8
V=— e S -4 I AT
u™ T I (270 TR

5x4 + 25x2
3 6
Values obtained from this two term expansion are

compared with the iterative solution for 4 = 4 in Fig,
2. Good agreement is found.

- 2.94) A% + 0(4%). (56)

SOLUTIONS FOR INTERMEDIATE VALUES OF A4

Numerical solutions for the distribution of velocity
and temperature in the channel have been obtained for
intermediate values of 4. We have solved (32) using the
Runge-Kutta integration technique. We look for
symmetric solutions in X so require solutions for which
dV/dx = Qat X = 0.In addition we require V= 0Qat
= — 1. Since our solutions are symmetric we consider
only theregion —1 < X < 0.1In order to solve this two
point boundary value problem we apply the boundary
condition ¥(—1} = 0 and choose an arbitrary value
V'(—=1), (V' = dV/dX). A numerical integration of (32)
is then carried out for —1 < % < 0. In general the
integration will yield V’(0) # 0. The dependence of
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V{0)/Aon V'{—1)/Aisgivenin Fig. 3for 4 = 16,100,
400 and 1000.

Noting that a solution to our problem requires
V'(0)=0 it is clear that we have two solutions for A=16
corresponding to V'(—1)/4 = 0.245 and —0.678. The
corresponding velocity and temperature profiles are
given in Fig. 4. The numerical solution for the upper
branch solution is in excellent agreement with the
iterative solution given in Fig. 2. The velocities as-
sociated with the lower branch solution arc always
negative but the temperatures are positive near wall
with a negative core. Heat is lost to the wall as
predicted by {35},

For A = 100 there are also two solutions; from Fig.
3 these correspond to V'~ 1Y/4 = 0.155and —0.150.
The corresponding velocity and temperature profiles
for the two solutions are given in Fig. 4, For the upper
solution the velocities and temperatures are both
positive ; the maximum velocity is at the center of the
channel but there are two temperature maximums
near X = +0.5. For the lower solution the velocity is
negative everywhere but the temperature is negative
only in the center of the channel.

From Fig. 3 we see that there are also two solutions
for A = 400. However, for 4 = 1000 there are four
solutions. A bifurcation occurs allowing two addi-
tional solutions. The velocity profiles corresponding
to the four solutions are given in Fig, 5. The upper
solution continues to have positive velocities, however,
the lower solution has a region of positive velocities
near the walls and a negative velocity core. The two
new solutions have maximum negative velocities near
X = +0.6. One of these solutions has a small region of
positive velocity near the center of the channel.

|

0.03 Q 1
.02 .

0.0t F A .

b

0 Nttt

2 04/06 08
X

1

-0.01

- 0.02r c 3

L
Ao

-0.03

-0.04r 1

T
1

-0.05

F16. 5. Velocity profiles for 4 = 1000, The four solutions a, b,
¢ and d are obtained by a numerical integration of {32).
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SOLUTION FOR LARGE 4

In order to gain further insight into the solutions
valid for large A we utilize the method of matched
asymptotic expansions. In order to obtain the outer
solution valid in the core flow we rewrite (32) as
2

d
V2= A(t —x%+2

e (57)

We expand V in powers of A~ ', The leading term V,
is obtained by neglecting d>V/d#® in (57) with the
result

Vo= +[4(1 — ]2 {58)
To obtain the next term in the expansion we write
d?v,
dx?

V2= Al ~ 53 + 2

2
A - ) 25 [0 = D) (69)
dx

and obtain

V=4 [A(1 - ]2 F (1 - 572+ 04717,
(60)

The upper and lower signs correspond to the upper
and lower branches respectively. Only the first term of
the expansion satisfies the boundary conditions V' = 0
at x = -1; and this term does not satisfy the
differential equation. In order to complete the solution
an inner solution is required that is valid near the walls.
The outer solution for the upper branch solution is
compared with the solution “a” for A = 1000in Fig. 5.
We will next consider the inner solution valid near
x = -1
The appropriate inner variables are

X=—14+¢X, V=g%Y

(61)

o]
5 10gx 5 20 |
-2 C.4 g% .
“4L o, }
- 6 1 1 1 J.

F1c. 6. Velocity solutions of (63) in terms of the inner variables

valid near the walls, Solutions corresponding to the limiting

valugs Y'(0) = A, and 2, are given. These approach the outer

solution X', A typical intermediate solution Y'(0) = 04

approaches the outer solution — X'/ in an oscillatory

manner. Two divergent solutions, Y'(0) =09, — 3.5 are
given.
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where
e=(2A4)7 15, (62)
Substitution into equation (57) gives
da’y
2—=Y2_-X 63)
dx? (

The solution must satisfy the boundary condition Y =
0at X = 0and Y must match the inner expansion of
the outer solution as X — oc. This limit, written in
terms of the inner variables, is Y > £ X'? as X — .
The equation satisfied by the inner variables, (63), is
of the form of the Painlevé transcendent. Its behavior
near the origin has been studied by Holmes and Spence
[9]. It was found that there are two solutions Y (X)
passing through the origin that approach + X' as
X — oo, The values of their slopes at the origin are

Y'(0) = 4, = 0.804715499 . .,

Y'(0)= 1, = — 33010879 ....

Some numerical solutions of (63) are given in Fig. 6. All
solutions pass through the origin and have different
values for the initial slope. Three types of behavior are
observed: (i) For Y'(0) > 4, and Y'(0) < 4, the
function Y(X) grows exponentially with X and ap-
proaches + oc. Examples are given for Y'(0) = 0.9 and
—3.5. These solutions have double poles at some
positive X ; (ii)for 4, > Y'(0) > A, the solutions are of
the form of slowly decaying oscillations about — X!,
These solutions approach — X!2 as X —oc. This
oscillatory behavior was previously observed for 4 =
1000 and was illustrated in Fig. 5. The solution for
Y'(0) = 0.4 is given in Fig. 6; (iii) for Y’(0) = A, and
Y’(0) = 2, the solutions approach + X!2as X — o as
illustrated in Fig. 6.

The inner expansion of the outer solution (60) in
terms of the inner variables gives two solutions Y =
+ X', Thus two solutions corresponding to ¥'(0) =
Ay, Ay approach Y = + X'7? asymptotically and an
infinite number of solutions corresponding to 1, <
Y'(0) < 4, approach Y= — X! asymptotically but
much more slowly because of their oscillatory
behavior.

For finite but large values of A those solutions that
satisfy the symmetry condition ¥’(0) = 0 are allowed
solutions. For 4 = 1000 we found four such solutions
numerically. The solution denoted “a” (see Fig. 5) had
the largest value of V’'(—1), i.e. the largest value of A in
terms of inner variables, and therefore appears to
correspond to the solution for A = 4,. The solution
denoted “d” (see Fig. 5) had the smallest value of
V'(—1), ie. the smallest value of A in terms of inner
variables, and therefore appears to correspond to the
solution for 4 = A,. The solutions “b” and “c” are
members of the oscillatory family of solutions with 4,
< A < 4,. Presumably for larger values of 4 more and
more solutions will be obtained that satisfy the
necessary boundary conditions.
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APPLICATION TO THE EARTH’S MANTLE

It is now generally recognized that thermal con-
vection in the earth’s mantle is responsible for plate
tectonics and mantle convection. The crystalline man-
tle behaves as a fluid on geological time scales due to
solid state creep processes. The mantle is heated from
within due to the decay of the radioactive isotopes of
uranium, thorium and potassium.

It is of interest to determine whether the processes
considered in this paper are relevant to mantle con-
vection. In order to do this we consider relevant
parameter and scale values for the earth’s mantle.
Representative values are (Oxburgh and Turcotte,
1978): h = 100 km, g = 10m/s?, k = I mm?/s,v =
10'°m?*/s, « = 107°K™', H = 107" W/kg, ¢, =
1 kJ/kgK. For the relevant non-dimensional para-
meters we find that D = 1072,C = 10" %and 4 = 10;
thus C/D = 107* and D « 1 and C/D « 1 so the
conditions for the validity of the theory are satisfied.

We are particularly interested in the properties of
the lower branch solution for 4 ~ 10. The maximum
non-dimensional downward velocity is V ~ 7 and the
corresponding dimensional velocity is v = 200 mm/yr.
This is about twice the average velocity of 100 mm/yr
associated with plate tectonics. The maximum non-
dimensional negative temperature is § ~ —10and the
corresponding temperature difference is 180°C. This
temperature difference is easily associated with mantle
flows. Although the implications of the above results
are not clear, it is of interest that the parameter values
associated with mantle convection are consistent with
the lower branch solution.
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SOLUTIONS MULTIPLES POUR DES ECOULEMENTS DE CONVECTION NATURELLE
DANS UN CANAL CHAUFFE INTERIEUREMENT, VERTICAL AVEC DISSIPATION VIS-
QUEUSE ET TRAVAIL DE PRESSION

Résumé—On considére I'écoulement vertical d’'un fluide de Boussinesq dans un canal vertical, avec
dissipation visqueuse et travail de pression. En I'absence d’un chauffage interne et sans application d’un
gradient de pression, deux solutions sont obtenues; la premiére est la solution attendue de I'absence
d’écoulement. La seconde solution donne des températures inférieures a celle de la paroi et avec une grande
vitesse descendante. Pour des valeurs modérées de I’addition de chaleur, deux solutions sont obtenues; une
branche supérieure avec des températures élevées et des vitesses ascendantes et une branche inférieure avec
des vitesses ascendantes et des températures basses. Lorsque le paramétre adimensionnel d’addition de
chaleur A = Hh*a?g?/vc2ic? atteint une valeur critique juste inférieure a 1000 les solutions bifurquent et on
obtient quatre solutions. Pour de grandes valeurs de A, les solutions sont examinées en utilisant la méthode
des développements asymptotiques. L'équation de la solution interne est de la forme de la transcendante de
Painlevé. Dans la limite des trés grandes valeurs de A4, on trouve pour le probléme interne un nombre infini de
solutions.

MEHRFACHE LOSUNGEN FUR STROMUNGEN IN EINEM VERTIKALEN KANAL BEI
FREIER KONVEKTION UNTER BERUCKSICHTIGUNG VON INNERER ERWAMUNG,
VISKOSER DISSIPATION UND DRUCKARBEIT

Zusammenfassung—Diese Arbeit behandelt die vertikale Stromung eines Boussinesq-Fluids mit innerer
Erwirmung in einem vertikalen Kanal bei viskoser Dissipation und Druckarbeit. Bei Fehlen von innerer
Erwirmung und ohne Druckgradienten werden zwei Losungen erhalten. Die erste ist die erwartete Losung
ohne Strémung. Die zweite adiabate Losung zeigt Temperaturen unterhalb der Wandtemperatur und eine
groBe abwirtsgerichtete Geschwindigkeit. Fiir miBige Werte der Wirmezufuhr werden zwei Losungen
erhalten: ein oberer Zweig mit hohen Temperaturen und aufwirts gerichteter Strémung und ein unterer
Zweig mit abwiirts gerichteter Stromung und niedrigen Temperaturen. Wenn der dimensionslose Parameter
fiir die Warmezufuhr A = Hh%a?g?/v?cx? einen kritischen Wert knapp unter 1000 erreicht, teilen sich die
Losungen, und man erhdlt vier Losungen. Fiir groBe Werte von 4 werden die Losungen mit Hilfe der
Methode angepalter asymptotischer Entwicklung gepriift. Die Gleichung fiir die innere Losung ist von der
Form der Painleve-Transzendenten. Im Grenzfall sehr grofler Werte von 4 findet man eine unendliche Zahl
von Lgsungen fiir das innere Problem.

BETBJIEHME PEIUEHMM JJIs1 ECTECTBEHHOKOHBEKTHUBHBIX TEUEHUH
B HATPEBAEMOM H3HYTPU BEPTUKAJIBHOM KAHAJIE C VUETOM BSI3KOH
JAUCCUIMMALIUU U PABOTHI CHJI JABJIEHUA

Aunotanus — PaccMaTpuBaeTcs TedeHue kuaAkocTd byccuHecka, HarpeBaeMol BHYTPEHHUMH HCTOYHH-
KaMH TeMNJa, B BEPTHKAILHOM KaHAJe C Y4E€TOM BJIMAHNSA BA3KOH auccunaumu U paboThi CA1 naBieHHs.
Jns ciy4as OTCYTCTBHS BHYTPEHHEIO MCTOYHHKA TEIUIAa U TPAAHEHTA JaBJICHHS RNOJIyYeHbl [Ba
PelLIEHH# ; IEPBOE ABJISETCS M3IBECTHBIM PELICHUEM JUIS HEMOABHXHOM XHakocTd. Bo BTopom aamuaba-
THYECKOM PELUEHHH NOJNY4eHbi 3HAYEHHA TEMIEPATYpPbl XHOKOCTH, MEHBIIHE 3HAYEHHH TEMMeEpaTypbl
CTEHKH, ¥ 66b1Ias CKOPOCTh BHU3 110 MOTOKY. JANs CPEAHMX 3HA4eHHH nojpoja Tenaa MoJydeHb! ABa
pelLeHHs : BEPXHSS BETBb MMeeT OOMbLINE 3HAYCHHS TEMIIEPATYPbl H HAMpPAaBJIEHHbIE BBEPX CKOPOCTH,
a HAXKHAA BETBb — HATPAaBJICHHbIE BHH3 CKOPOCTH M Mafble 3HaueHMs TemnepaTypel. Korma Gespas-
MepHBIi napaMeTp noasona Temna 4 = Hh?a’g?/v2cp?k? NOCTHIAET KPUTHYECKOTO 3HAYEHNS, PABHOTO
npuMepHo 1000, mBa pewieHus pacnafaioTcs Ha ueTwipe. [lpu GoMbluMx 3Ha4eHHSAX A peLUeHUA
HaXOMATCH METOJOM CPALHBAEMBIX ACHMNTOTHYECKMX pa3jiokeHudl. BHyTpeHHee pelueHue umeeT BUA
TpaHCLEHAEHTHOrO ypaBHeHus [eitnnee. B npenesne oueHp GosIbIMX 3HaueHHit 4 NoNyueHO GECKOHEYHOE
YUCIIO PELUEHHN TS BHYTPEHHEN 3aJa4H.



