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Abstract---This paper considers the vertical flow of an internally heated Boussinesq fluid in a vertical channel 
with viscous dissipation and pressure work. In the absence of internal heating and with no applied pressure 
gradient, two solutions are obtained; the first is the expected solution with no flow. The second adiabatic 
solution has temperatures less than the wall temperature and a large downward velocity. For moderate 
values of heat addition two solutions are obtained; an upper branch with hot temperatures and upward 
velocities and a lower branch with downward velocities and cool temperatures. When the non-dimensional 
heat addition parameter A = Hh2a2gz/vz cz I? reaches a critical value just under 1000 the solutions 
bifurcate and four solutions are obtained. For large values of A the solutions are examined using the method 
of matched asymptotic expansions. The equation of the inner solution is of the form of the Painleve 
transcendent. In the limit of very large A an infinite number of solutions are found for the inner problem. 

NOMENCLATURE 

= Hh4 D’JvK’, non-dimensional heat 
production ; 
depth of fluid layer ; 
specific heat at constant pressure ; 
= vK/gh3, non-dimensional parameter; 
= aghlc,, dissipation number ; 
acceleration of gravity; 
half-width of channel ; 
heat generation per unit mass; 
thermal conductivity; 
pressure ; 

= V/K, Prandtl number; 
time ; 
temperature; 
velocity ; 
non-dimensional vertical velocity ; 
coordinate. 

Greek symbols 

a, coefficient of thermal expansion ; 
Yv = ol/p,c,x, Gruneisen’s parameter; 
% absolute viscosity; 
$9 non-dimensional temperature; 
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K, 

V, 

zijT 

X9 

thermal diffusivity; 

kinematic viscosity; 

shear stress; 
isothermal compressibility. 

INTRODUCTION 

VERTICAL channel and pipe flows with viscous dissi- 

pation have been considered by a number of authors 
[l-3]. Although these authors include viscous heating 
they do not include pressure work. This omission is 
appropriate if the flow is driven by an external pressure 
gradient but is not appropriate if it is driven by 
buoyancy forces. The role of both viscous dissipation 
and pressure work in thermal convection within a 
horizontal fluid layer heated from below has been 
considered by [4]. Both effects have been considered 
for laminar natural convection on avertical flat surface 

by [51. 
The roles of viscous dissipation and pressure work 

during natural convection are particularly important 
in mantle convection [6]. The governing parameter is 
the dissipation number D = agb/c,. In this paper we 
consider flow in a vertical channel. The principle 
purpose is to better understand natural convective 
flows with both viscous dissipation and pressure work. 
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FORMULATION OF THE PROBLEM 

The basic equations for conservation of mass, 
momentum and energy in a compressible fluid are [7] : 

(1) - _+c!Lo, 1 DP 
P Dt ?Xi 

Dq 7 irij 
P~=-$+~+Pgi3 (2) 

J 

(3) 

We assume that the changes of density are small so 

that the equation of state is given by 

DY 
exp(-Dy)-exp -- i I (13) 

?! 

Since y is of order 1 for all fluids and solids that behave 

like fluids due to solid state creep, the adiabatic 
quantities change significantly over a vertical distance 
of order c&g. With 7; of order 1, a sufficient condition 
for the density change to be small is D a 1. In this limit 
the adiabatic state reduces to 

T, = j-0, 

P, = ~0 - /wh.v, 

Pa = PO. 

(14) 

(15) 

(16) 

P = Po[l + X(P -Po) - 4T- Toll (4) 
We next introduce a set of non-dimensional 

variables : 
where p. and 7, are a reference pressure and 

temperature. K u, 

In the absence of convection, heat addition and heat 
Ui=hD, p=p.+_Illf_p, rij=“s. 

h2D h2D ‘I’ 

conduction we can define an adiabatic solution given 

by: p = pa + pop, T= T, + g (17) 

+a _=- 
dy pas> (5) where 

dT,_ 8Ta 
+a cp Pa 

The solution of these equations with (4) is 

(6) 
(18) 

Introducing these non-dimensional variables into (4) 
we obtain 

(7) Y=p.+po~~-Po~o. 
Y 

(19) 

1 +aT, 
Pa = PO + ___ ! i We shall obtain solutions for which 0 is of order 1, for 

X these solutions to be incompressible we further require 

x [exp( - pogxy) - II + “Top, C/D cc 1. If D << 1 and C/D -x 1 the flow is 

incompressible and (1) reduces to 

als,_ 

x [expc- y) (8) 
axi - O. (20) 

We next turn to the momentum equation. Introduc- 

It is convenient to introduce two non-dimensional 
parameters 

DE%!!, (9) 
CP 

a 

i- (10) 

PcCp% 

where D is the dissipation number and y Gruneisen’s 
parameter. We will associate the characteristic length h 
with the half-width of the vertical channel and in- 
troduce non-dimensional coordinates 

xi 
q = -. 

h 
(11) 

Introducing (9)-(11) into (7) and (8) gives 

T, = To exp( - Dj), 

ing the nondimensional variables into (2) gives 

p u, xi 
p. PrD 2Zj 

where Pr = q/~p~ is the Prandtl number and we have 
taken g to be in the - y direction. Assuming the fluid to 
be incompressible except in the buoyancy term (a 
modified form of the Boussinesq approximation) we 
have 

_ hii 
zij = g 

I 

and (21) reduces to 

(22) 

u. du. 
LL= - 
PrD 8Yj 

(23) 

For a very viscous fluid Pr D >> 1, the inertia term can 

be neglected, and (23) reduces to 

Pa -Po Y 
-=D(l +aT,) 

Pogh 
(24) 
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: 

Fro. 1. Illustration of the vertical channel with width 2h. 

Finally we consider the energy equation. Introduc- 
ing the non-dimensional variables into (3) gives 

where 

Hh4 D2 
A=--------. 

Vl? 
(26) 

We note that A = RaD where Ra = ugpHh5/kKv is the 
Rayleigh number for a fluid layer of thickness h heated 
from within. Assuming incompressibility so that D cc 

1, p/p0 2 1, C/D cc 1, T,or << 1 and (25) is valid, we 
obtain 

(27) 

Our primary interest in this paper is a vertical, fully 
developed flow in a channel with a width 2h and with 
walls held at 6’ = 0 as illustrated in Fig. 1. We assume 
that (23), (24) and (27) are applicable. For this problem 
ui zz V(Z)and 0 = 0(x). We further assume that there is 
no applied pressure gradient so that p = 0. We find 
that (23), (24) and (27) reduce to 

,lZTi 
o=z+o 

(29) We introduce w = V/V,, integrating (37) then gives 

Eliminating 0 from (28) and (29) we obtain 

d4V d 
s=z (30) 

This is the basic equation that we shall consider in this 
paper. 

The boundary conditions for flow in an isothermal, 
vertical channel with walls at x = f 1 are 

V=O, t?=O atY=fl. (31) 

Integration of (30) twice with these boundary con- 
ditions yields 

d2V 
s = $I” - ;-A(1 - X2). 

The required boundary conditions for this 2nd-order, 
non-linear differential equation are V = 0 at X = f 1. 

In our analysis we shall consider only symmetric 
solutions of (32) with respect to x = 0. Thus we can 
replace one of the boundary conditions (31) with 

%2=;, atx=o. 
dx- dx 

We now eliminate f3 from (28) and (29) and integrate 
using (33) with the result 

de dV 
z=-Vz-Ax. 

For f = - 1 this becomes 

(34) 

The non-dimensional temperature gradient at the wall 
is equal to A and is either positive or zero. The heat 
generated internally in the channel is transferred to the 
walls. 

ADIABATIC SOLUTIONS, A =0 

We first consider the solutions when A = 0, no heat 
sources. For this case (32) becomes 

dZV - @2 

is- 
(361 

with the required boundary conditions V = 0 at x = 
f 1. There are two solutions of (36) that satisfy these 
boundary conditions. The first is V = 0, i.e. there is no 
flow. 

A second solution is obtained by integrating (36) 
with respect to V with dVjdx = 0 and V = V, at x = 0 
to give 

= $(V” - v;,. (37) 

Clearly V, < 0 since (d V/d-U)2 is positive definite and 
0 >, V 2 V, which implies a negative or downward 
flow at the center. 

s w dw 

0 (1 - wJ)l’Z = 

where w is an elliptic function [S]. Since w = 1 at I = 0 
the value of V, is given by 

vo= -3[s:(!_d;3)l,2] 
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Substituting dimensional quantities the maximum 
velocity at the center of the channel is 

. wt 

The solution V = 0 is expected in the absence of 
internal heating. The second solution requires further 
discussion. Cold fluid is introduced at the top of the 
channel and flows down the channel at constant 
velocity without any applied pressure gradient. The 
maximum downward velocity is given by (37). Since 
A = 0, do/d% = 0 at X = i 1 from (35), thus there is no 
heat flux at the walls, the second solution is adiabatic. 

From (28) and (36) we find that 

@=)V2. (41) 

From (39) and (41) the minimum temperature at the 
center of the channel is 

6(O) = - $V; = - 17.39527 (42) 

and the actual temperature difference between the 
center of the channel and the walls is 

gc h2 
T- To = - 17.395272. 

d’gw 
(43) 

We shall refer to this adiabatic solution as the lower 
branch solution and the trivial 6 = 0 solution as the 
upper branch solution. We shall show that for small 
and intermediate values of A two solutions are ob- 
tained which can be associated with these two 
branches. 

SOLUTION FOR SMALL A 

We next consider a solution for the upper branch 
valid for small A. Differentiation of (32) with respect to 
A gives 

= vg - +(l -X2). (44) A numerical solution based on (49) led to con- 

Our objective is to obtain the value of aV/JA at A = 0. 
Since V = 0 at A = 0 for the upper branch solution, 
(44) can be integrated twice to give 

av 
a.4 *=o 

= & 1 - P)(5 - a2). (45) 

The constants of integration have been evaluated using 
the conditions dV/dA = 0 at 2 = + 1. Therefore the 
upper branch solution for V is initially an increasing 
function of A since dV/dA > 0 for - 1 < i < 1. 

An iteration procedure valid for small A is developed 
and is used to prove the existence and uniqueness of the 
upper branch solution for a certain range of A. 
Integrating (32) twice with respect to zz and applying 
the boundary conditions V( - 1) = dV/dZ(O) = Ogives 
the non-linear integral equation 

1 O 
v(z) = - 2 

s 
k&t) V’(t)dt i- Ag(S), _ 

1 

k(x, t) = 
1+x t<“f<O 

1st -l<tlY’ (46) 

g(X) = &(l - P)(S - X2). 

This is an equation of the Hammerstein type. It can be 
shown that for a certain range of A the iterative 
procedure 

1 O 
V,+,(X) = - 5 

s 
k(x, t) V;(t)dt + Ag(f) (47) _, 

with 

V,(S) = Ag(f) (48) 

converges uniquely to a function V(X) satisfying (46). 
Since k is positive it follows from (47) that 

V ,,+ 1 < Ag for all x. Then from (49) we have 

r 0 

Iv,+, - v,(= +; k/V:- I’,‘-,ldx 

and the L, norm, defined for a functionf by 

satisfies the inequality 
& 

I/ vn+ 1 - f’,, j/ < AM // V,, - v,- 1 /I 

where 

0 0 
M2= 

s s 
k2(Z, t)g2(t)d%dt 

-1 -1 

giving 

M = 0.0736628. 

(49) 

(50) 

(51) 

(52) 

(53) 

Convergence of the iterative procedure is guaranteed 
for A -c M-’ = 13.575. 

2.5 

v 

2.0 

0 
0 0.2 0.4 0.6 0.8 1.0 

FIG. 2. Velocity profiles of the upper branch solution for A = 
4 and 16. Solid lines are iterative solutions of (49). Circles are 

from the series solution given in (56). 
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i 

a 

FIG. 3. Dependence of (dV/dx)A-’ at x = 0 on (dV/dX)A-’ at x = - 1. Since solutions must satisfy the 
condition (dJJ/dx) = 0, valid solutions correspond to the intersections of the curves with the horizontal axis. 
For A = 16, 100 and 400 two solutions are obtained. For A = loo0 four solutions are obtained, these are 

denoted as a, b, c and d. 

vergence for A < 20 and failed to converge for larger 
values of A. The numerical solution utilized a 10 point 
Gaussian integration formula. The iteration was con- 
sidered to converge if 

igt vi+ ltTi'i) - iEl v,2(ai) / < E (54) 

where xi were the points where the function was 
evaluated. The number of iterations required for 

IO 20 

18 

8 16 

14 

6 12 

10 

4 8 

6 

2 4 

2 

0 0 

..2 -8 

-4 -16 

-6 -24 

-8 -32 

FIG. 4. Velocity and temperature profiles for A = 16 and 100 
obtained by numerical integration of (32). 

convergence increased with increasing A. Velocity 
profiles for A = 4 and 16 with E = 10m3 are given in 
Fig. 2. 

An alternative technique for obt~ning solutions 
valid for smail A is to expand in an asymptotic series of 
the form 

V=AV,+A2VI+‘... 

Substitution into (32) gives 

(55) 

5X4 
- 3 + F - 2.94 A2 + 0(A3). 

) 
(56) 

Values obtained from this two term expansion are 
compared with the iterative solution for A = 4 in Fig. 
2. Good agreement is found. 

SOLUTIONS FOR INTERMEDIATE VALUES OF A 

Numerical solutions for the distribution of velocity 
and temperature in the channel have been obtained for 
intermediate values of A. We have solved (32) using the 
Runge-Kutta integration technique. We look for 
symmetric solutions in zc so require solutions for which 
dV/dx = 0 at I? = 0. In addition we require V = 0 at X 
= - 1. Since our solutions are symmetric we consider 
only the region - I < X < 0. In order to solve this two 
point boundary value problem we apply the boundary 
condition V( - 1) = 0 and choose an arbitrary value 
V’( - I), (V’ = dV/dx). A numerical integration of (32) 
is then carried out for -1 KY P c 0. In general the 
integration will yield V’(0) # 0. The dependence of 



vyO)/A on f”( - 1 )/A is given in Fig. 3 for A = 16,100, 
400 and 1000. 

Noting that a solution to our problem requires 
I/‘(O) =0 it is clear that we have two salutions for A = 16 
corresponding to V’( - 1)/A = 0.245 and - 0.678. The 
corresponding velocity and temperature profiles are 
given in Fig. 4. The numerical solution for the upper 
branch solution is in excellent agreement with the 
iterative solution given in Fig. 2. The veiocities as- 
sociated with the lower branch solution are always 
negative but the temperatures are positive near wall 
with a negative core. Heat is lost to the wall as 
predicted by (35). 

For A = LOO there are also two solutions ; from Fig. 
3 these correspond to P”( - 1)/A = 0.155 and -0.150. 
The corresponding velocity and temperature profiles 
for the two solutions are given in Fig. 4. For the upper 
solution the velocities and temperatures are both 
positive; the maximum velocity is at the center of the 
channel but there are two temperature maximums 
near X = f0.5. For the lower solution the velocity is 
negative everywhere but the temperature is negative 
only in the center of the channel. 

From Fig. 3 we see that there are also two solutions 
for A = 4OQ. Howczer, for A - 1000 there are four 
solutions. A biFur~tion occurs allowing two addi- 
tional solutions The velocity profiles corresponding 
to the four solutions are given in Fig, 5. The upper 
solution continues to have positive velocities, however, 
the lower solution has a region of positive velocities 
near the walls and a negative velocity core. The two 
new solutions have maximum negative velocities near 
I = f-0.6. One of these solutions has a small region of 
positive velocity near the center of the channel. 

FIG. 5. VeIocity profiles for .4 = t@JO. The four solutions a, b, 
c and d are obtained by a numerical integration of (321. 

SOLUTION FOR LARGE A 

In order to gain further insight into the solutions 
valid for large A we utilize the method of matched 
asymptotic expansions. In order to obtain the outer 
solution valid in the core flow we rewrite (32) as 

V2 = A(1 -32) + 2g. (57) 

We expand V in powers of A- I:‘. The leading term V, 
is obtained by neglecting d2fi/dXz in (57) with the 
result 

V, = + [A(1 - ,z)]* ‘2. (58) 

To obtain the next term in the expansion we write 

1/2 = A(1 -X2) + 2% 

=c: A(1 - zz2s2) f $$[A(1 - x~)“J’~~ (59) 

and obtain 

V= * [A(1 - *Z)]“z T (1 - x*)-2 + OfA-=). 

(60) 

The upper and lower signs correspond to the upper 
and lower branches respectively. Only the first term of 
the expansion satisfies the boundary conditions V = 0 
at x = & 1; and this term does not satisfy the 
differential equation. In order to complete the solution 
an inner solution is required that isvalid near the walls. 
The outer solution for the upper branch solution is 
compared with the solution “a” for A = 1000 in Fig. 5. 
We will next consider the inner solution valid near 
x= -1. 

The appropriate inner variables are 

P= - li&, V=C-=Y (61) 

61 I ‘I 4 I I 

0 

-2 

-4 

-6 

FIG. 6. Velocity solutions of(63)in terms of the inner variables 
valid near the walls. Solutions corresponding to the limiting 
values Y’(0) = 1, and ,I, are given. These approach the outer 
solution X”‘2. A typical intermediate solution Y’(O) = 0.4 
approaches the outer solution - X”’ in an oscillatory 
manner. Two divergent soiutions, Y’(0) = 0.9, - 3.5 are 

given. 
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where 

8 = (2/l- 1’5. 

Substitution into equation (57) gives 

(62) 

2$ = Y2 - x. 

The solution must satisfy the boundary condition Y = 
0 at X = 0 and Y must match the inner expansion of 
the outer solution as X + (13. This limit, written in 
terms of the inner variables, is Y + +X 1’2 as X -+ YI. 

The equation satisfied by the inner variables, (63), is 
of the form of the Painleve transcendent. Its behavior 
near the origin has been studied by Holmes and Spence 
[9]. It was found that there are two solutions Y(X) 
passing through the origin that approach +X1” as 
X + r^-. The values of their slopes at the origin are 

Y(O) = 1, = 0.804715499 .) 

Y(0) = 1, = - 3.3010879 . 
Some numerical solutions of (63) are given in Fig. 6. All 
solutions pass through the origin and have different 
values for the initial slope. Three types of behavior are 
observed: (i) For Y’(0) > I, and Y’(0) < A2 the 
function Y(X) grows exponentially with X and ap- 
proaches + m. Examples are given for Y’(0) = 0.9 and 
-3.5. These solutions have double poles at some 
positive X; (ii) for i, > Y’(O) > 1, the solutions are of 
the form of slowly decaying oscillations about - X1 ,2. 
These solutions approach - X1:’ as X -+ Z. This 
oscillatory behavior was previously observed for A = 
1000 and was illustrated in Fig. 5. The solution for 
Y’(0) = 0.4 is given in Fig. 6; (iii) for Y’(0) = 1, and 
Y’(0) = 1, the solutions approach +X1 I2 as X + z as 
illustrated in Fig. 6. 

The inner expansion of the outer solution (60) in 
terms of the inner variables gives two solutions Y = 
kX1’2. Thus two solutions corresponding to Y’(O) = 
Al, 1, approach Y = + X1;’ asymptotically and an 
infinite number of solutions corresponding to 1, < 
Y’(0) < 1, approach Y = - X1!’ asymptotically but 
much more slowly because of their oscillatory 
behavior. 

For finite but large values of A those solutions that 
satisfy the symmetry condition V’(0) = 0 are allowed 
solutions. For A = 1000 we found four such solutions 
numerically. The solution denoted “a” (see Fig. 5) had 
the largest value of V’( - l), i.e. the largest value of ,! in 
terms of inner variables, and therefore appears to 
correspond to the solution for i = il. The solution 
denoted “d” (see Fig. 5) had the smallest value of 
V’( - l), i.e. the smallest value of 3, in terms of inner 
variables, and therefore appears to correspond to the 
solution for i = /2,. The solutions “b” and “c” are 
members of the oscillatory family of solutions with 1, 
< 1 < i,. Presumably for larger values of A more and 
more solutions will be obtained that satisfy the 
necessary boundary conditions. 

APPLICATION TO THE EARTH’S MANTLE 

It is now generally recognized that thermal con- 
vection in the earth’s mantle is responsible for plate 
tectonics and mantle convection. The crystalline man- 
tle behaves as a fluid on geological time scales due to 
solid state creep processes. The mantle is heated from 
within due to the decay of the radioactive isotopes of 
uranium, thorium and potassium. 

It is of interest to determine whether the processes 
considered in this paper are relevant to mantle con- 
vection. In order to do this we consider relevant 
parameter and scale values for the earth’s mantle. 
Representative values are (Oxburgh and Turcotte, 
1978): h = 100 km, g = 10m/s2, IC = 1 mm2/s, v = 
1016m2/s, tl = 10-5K-1, H = lo-” W/kg, cp = 
1 kJ/kgK. For the relevant non-dimensional para- 
meters we find that D = lo-‘, C = 10m6 and A = 10; 
thus CID = 10e4 and D << 1 and C/D << 1 so the 
conditions for the validity of the theory are satisfied. 

We are particularly interested in the properties of 
the lower branch solution for A 1 10. The maximum 
non-dimensional downward velocity is V N 7 and the 
corresponding dimensional velocity is v = 200 mm/yr. 
This is about twice the average velocity of 100 mm/yr 
associated with plate tectonics. The maximum non- 
dimensional negative temperature is r3 = - 10 and the 
corresponding temperature difference is 180°C. This 
temperature difference is easily associated with mantle 
flows. Although the implications of the above results 
are not clear, it is of interest that the parameter values 
associated with mantle convection are consistent with 
the lower branch solution. 
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SOLUTIONS MULTIPLES POUR DES ECOULEMENTS DE CONVECTION NATURELLE 
DANS UN CANAL CHAUFFE INTERIEUREMENT, VERTICAL AVEC DISSIPATION VIS- 

QUEUSE ET TRAVAIL DE PRESSION 

Rksumi-On considtre Ecoulement vertical d’un fluide de Boussinesq dans un canal vertical, avec 
dissipation visqueuse et travail de pression. En l’absence d'un chauffage interne et sans application d'un 
gradient de pression, deux solutions sont obtenues; la premiire est la solution attendue de I’absence 
d’&oulement. La seconde solutiondonne des temptratures infkrieures I celle de la paroi et avec une grande 
vitesse descendante. Pour des valeurs mod&es de I’addition de chaleur, deux solutions sont obtenues; une 
branche superieure avec des temptratures &levees et des vitesses ascendantes et une branche infkrieure avec 
des vitesses ascendantes et des tempkratures basses. Lorsque le paramPtre adimensionnel d’addition de 
chaleur A = Hh2a2gZ/v2c$c2 atteint unevaleur critique juste infkrieure B loo0 les solutions bifurquent et on 
obtient quatre solutions. Pour de grandes valeurs de A, les solutions sont examintes en utilisant la methode 
des dbeloppements asymptotiques. L’equation de la solution interne est de la forme de la transcendante de 
Painlevt. Dans la limite des trbs grandes valeurs de A, on trouve pour le probltme interne un nombre infini de 

solutions. 

MEHRFACHE LC)SUNGEN FUR STROMUNGEN IN EINEM VERTIKALEN KANAL BE1 
FREIER KONVEKTION UNTER BERUCKSICHTIGUNG VON INNERER ERWAMUNG, 

VISKOSER DISSIPATION UND DRUCKARBEIT 

Zusammenfassung-Dies Arbeit behandelt die vertikale Stramung eines Boussinesq-Fluids mit innerer 
ErwSirmung in einem vertikalen Kanal bei viskoser Dissipation und Druckarbeit. Bei Fehlen von innerer 
ErwLrmung und ohne Druckgradienten werden zwei LGsungen erhalten. Die erste ist die erwartete LGsung 
ohne Str6mung. Die zweite adiabate LGsung zeigt Temperaturen unterhalb der Wandtemperatur und eine 
groBe abwtirtsgerichtete Geschwindigkeit. Fiir mll3ige Werte der Wa’rmezufuhr werden zwei Lasungen 
erhalten: ein oberer Zweig mit hohen Temperaturen und aufwLrts gerichteter Str(imung und ein unterer 
Zweig mit abwlrts gerichteter Str(imung und niedrigen Temperaturen. Wenn der dimensionslose Parameter 
filr die Wtimezufuhr A = Hh2a*g2/v2c~d einen kritischen Wert knapp unter 1000 erreicht, teilen sich die 
LGsungen, und man erhllt vier LBsungen. Filr groRe Werte von A werden die LGsungen mit Hilfe der 
Methode angepal3ter asymptotischer Entwicklung gepriift. Die Gleichung filr die innere LGsung ist von der 
Form der Painleve-Transzendenten. Im Grenzfall sehr groRer Werte von A findet man eine unendliche Zahl 

von LGsungen fiir das innere Problem. 

BETBJlEHME PEllIEHkIti AJIJI ECTECTBEHHOKOHBEKTMBHLIX TErIEHMI? 
B HAI’PEBAEMOM B3HYTPM BEPTMKAJIbHOM KAHAJlE C Y’-IETOM BII3KOfi 

~MCCMl-lAlJMM M PA6OTbI CM_Jl AABJIEHMIl 

AaHmaunn - PaccMaTpnsaeTcn Teyemie XKM~KOCTII EycceHecKa, HarpeaaeMoi? aHyTpeminh4H ~cToqtu+ 
KawiTenna,B BepTHKanbHOM KaHaneC yqeToh4 BJmlHAR B113KOii nliccanaunn A padorb CAJInaBneHHa. 

,@a CJIy'laa OTCyTCTBHa BHyTpeHHerO ACTO'IHHKB Tenna A rpanaeHTa naBnemia nonyseHbr nna 
pemeHun;nepBoe aanKeTcK H3BeCTHblM pememieM nna HcnOL,BWXHOfi WUnKOCTn. Bo BTOpOM anaa6a- 

THqeCKOM peI”eHBB nOJIyqeHb1 3Ha'leHWII TeMnepaTypbI XHLIKOCTH, h4eHbmne 3HaqeHltW TeMnepaTypbI 
creHKn,n 66nbman cKoEjocTb a~li3 no noTory.,& cpejwsx 3HaseHaB nonBona Tenna nonyqeHbl nea 

pemesen: aepxHas aeTBb iih4eeT 66nbmwe 3Ha9eHr(fl TeMneparypbI II HanpaanenHble aaepx CKOPOCT~~, 

a HRXH~~ BeTBb-HanpaBneHHble BHH~ CKO~~CTA H Manble 3HaqeHna TeMnepaTypbl. Korna 6espas- 

MepHbIfi napaMeTp nonsona Tenna A = HhZa2g2/v2cp2K2 nOCTHraeT KpRTIireCKoro 3HaqeHAII. paeHor0 
npwepso 1000, nsa pemeHea pacnanaloTcs Ha qerblpe. f’lpa 6onbmsx 3Haqennax A pememin 

HaxonsTCII MeTonOM CpamnaaeMbrx aCHMnTOTHwCKHX pa3JIOXeHnti. BHyTpeHHee peuIeHHe AMeeT BHn 

TpaHcueHneHTHoroypaBseHen~eiisnee.Bnpeneneo~eHb60nbm~x3HaseH~BA nonyqeHo6ecKoHeqHoe 

qHcn0 pemeHeit nnu BHyrpeHHeA sanaw. 


